Sparse Space-Time Deconvolution for Calcium Image Analysis
نویسندگان
چکیده
We describe a unified formulation and algorithm to find an extremely sparse representation for Calcium image sequences in terms of cell locations, cell shapes, spike timings and impulse responses. Solution of a single optimization problem yields cell segmentations and activity estimates that are on par with the state of the art, without the need for heuristic preor postprocessing. Experiments on real and synthetic data demonstrate the viability of the proposed method.
منابع مشابه
Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions
We propose a compressed sensing (CS) calcium imaging framework for monitoring large neuronal populations, where we image randomized projections of the spatial calcium concentration at each timestep, instead of measuring the concentration at individual locations. We develop scalable nonnegative deconvolution methods for extracting the neuronal spike time series from such observations. We also ad...
متن کاملRestoration of Atmospheric Turbulence-distorted Images via RPCA and Quasiconformal Maps
We address the problem of restoring a high-quality image from an observed image sequence strongly distorted by atmospheric turbulence. A novel algorithm is proposed in this paper to reduce geometric distortion as well as space-and-time-varying blur due to strong turbulence. By considering a suitable energy functional, our algorithm first obtains a sharp reference image and a subsampled image se...
متن کاملFast Deconvolution with Color Constraints on Gradients
In this report, we describe a fast deconvolution approach for color images that combines a sparse regularization cost on the magnitudes of gradients with constraints on their direction in color space. We form these color constraints in a way that allows retaining the computationally-efficient optimization strategy introduced in recent deconvolution methods based on \emph{half-quadratic splittin...
متن کاملMyopic sparse image reconstruction with application to MRFM
We propose a solution to the image deconvolution problem where the convolution operator or point spread function (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited to produce a few principal components explaining the uncertainty in a high dimensional space. Specifically, we assume the image is sparse corresponding to the natural sparsity of m...
متن کاملFast Reconstruction of SAR Images with Phase Error Using Sparse Representation
In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...
متن کامل